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Abstract 
 
LS-DYNA version R7 includes CFD solvers for both compressible and incompressible flows. The 
incompressible CFD solver (ICFD) may run as a stand alone CFD solver for pure thermal fluid problems or 
it can be strongly coupled using a monolithical approach with the LS-DYNA solid thermal solver in order to 
solve the complete conjugate heat transfer problem.  
 
This paper will focus on the thermal part of the ICFD solver and its associated features. Several results of 
thermal and conjugate heat transfer problems will be presented as well as some industrial applications for 
illustration and discussion purposes. 
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1- Introduction 
 
LS-DYNA version R7 double precision aims to solve complex multi-physics problems involving fluids, 
electromagnetism or chemistry interacting with the solid mechanics and thermal solvers of LS-DYNA. This 
paper will focus on the incompressible flow solver (ICFD) and more specifically on its thermal and 
conjugate heat transfer capabilities.  
 
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and 
exchange of thermal energy and heat between physical systems. The ICFD solver offers the possibility to 
solve and study the behavior of temperature flow in fluids. Potential applications are numerous and 
include refrigeration, air conditioning, building heating, motor coolants, defrost or even heat transfer in the 
human body. Furthermore, the ICFD thermal solver is fully coupled with the thermal solver using a 
monolithic approach which allows the solving of complex problems where both heated structures and 
flows are present and interact together. 
 

2- Heat Equation and coupling with the thermal solver for solids 
 
The distribution of heat in a given region of fluid over time is described by a convection-diffusion equation 
also called heat equation: 
 

  

  
   

  

   
  

   

     
        

 
where α is the called thermal diffusivity and f is a potential source of heat. 
 
This formulation is incomplete if the appropriate set of boundary conditions and initial conditions is not 
specified. The user can specify the temperature or the heat flux on the boundaries resulting in Dirichlet of 
Neumann boundary conditions respectively: 
 

                                               
 
Furthermore, if no boundary condition is specified, the solver will automatically apply a Neumann 
condition:  
 

                           
 
Let us note that, as in accordance with the incompressibility hypothesis, the temperature does not 
influence the flow’s velocity. For specific applications involving free convection, the classic Boussinesq 
model has been introduced and is available to users. 
 
For the thermal coupling between the heat equation solved by the thermal solver in the structure and the 
heat equation solved in the fluid by the ICFD solver, a monolithic approach has been adopted. The 
coupling between the structure and the fluid is therefore very tight and strong at the fluid-structure 
interface. The resulting full system includes both the structural and the fluid temperature unknowns (See 
Figure 1) and is solved using a direct solver which may in some cases be computer-time consuming. 
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Figure 1 Vector of temperature unknowns when the fluid thermal solver and structure thermal solvers are 

coupled using a monolithically approach. 

 

3- Validation of the conjugate heat transfer solver 

 
3-1 The analytical solutions 
 
As the development of the different R7 solvers progresses, several verification, validation and 
benchmarking tests have been conducted both internally at LSTC and externally by beta testing users in 
order to track bugs and improve numerical accuracy. This section will present some of the results obtained 
on a conjugate heat transfer problem involving the flow in a parallel plane channel (2D problem) or a 
cylindrical channel (3D problem). 
 
In [1], the analytical solution of the conjugate heat transfer problem in a parallel plane channel has been 
studied by applying a periodic temperature boundary condition prescribed on the exterior face of the solid 
channel (                 . In [2], the problem has been extended to the axi-symmetric cylindrical 
channel case with a periodic prescribed temperature boundary condition. In all cases, the flow is 
considered laminar and fully hydrodynamically and thermally developed. Numerous industrial applications 
meet such conditions and are often encountered in nuclear reactor cooling designs, heat exchangers for 
Stirling-cycle machines or internally finned ducts. Figure 2 offers a sketch of the complete fluid-solid 
conjugate heat transfer problem. 
 
As in most fluid mechanics problems, it is often more convenient to work in dimensionless quantities: 
 

                           
    
  

                        

 
with    the half height of the internal channel wall,    the half height of the exterior channel wall, z the axial 

coordinate of the channel,   the adimensional temperature,    and    the solid and fluid thermal 

conductivities respectfully,   the angular frequency, U and    the longitudinal component of the fluid 
velocity and its mean value and finally Pe the Peclet number. 
 
The temperature distribution has been obtained analytically in [1] and in [2] for the 2D and 3D cases 
respectfully by expressing the energy balance equation as a complex-valued hypergeometric confluent 
equation. The temperature profile can be written as: 
 

                 
  

  
           

  

  
  

 
Where it has been shown in [1] that for the 2D case,    and    can be expressed as the real and complex 
parts of the complex valued function: 
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where                 is the confluent hypergeometric function and   ,   ,    are complex constants 
that be calculated using the boundary conditions. 
 
For the 3D case, it has been shown in [2] that the solution can be written as :  
 

     

 
 
 

 
                          

 
  

            

    

 

   

             

      
  

  
        

  

  
                                        

  

 
where Γ is the Gamma function, I and K are the first and second type Bessel functions and   ,   , and    
are complex constants that be calculated using the boundary conditions. 
 
Figure 3 offers some examples of temperature distributions for different set of parameters for the 2D case. 
 
 

 
Figure 2 Sketch of the longitudinal section of the channel 

 
Figure 3 Analytical solution: dimensionless temperature distribution versus   and   for                

         , a) Fluid domain only b) Fluid and Solid coupled domains. 
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3-1 The numerical solutions 
 
Figure 4 offers a view of the mesh used for both the 2D and 3D cases. For this analysis, several 
parameters will be varied such as the Peclet number, the angular frequency, thermal conductivities and so 
forth. 
 
For the 2D case, the continuity of temperature at the interface is well insured by the numerical simulation 
as can be observed on Figure 5. Figure 6 offers a qualitative comparison between the analytical and the 
numerical temperature profiles at the solid-fluid interface. In Figure 7a), the dimensionless temperature 
distribution at the solid-fluid interface is reported and a comparison is made with the analytical solution for 
different Peclet numbers. A higher Peclet number yields smaller amplitude at the interface. This is 
consistent as a higher Peclet number value implies more temperature and advection and on the other 
hand, an infinitely small Pecklet number would mean that the fluid has no influence on the solid 
temperature distribution. Figure 7b), shows that while the period of the axial temperature distribution 
strongly differs in the three considered cases the oscillation amplitude does not display strong differences. 
Figure 7c) shows again the dimensionless temperature distribution at the interface for three different 
values of γ. As expected, a higher γ value yields a temperature distribution closer to the boundary 
condition profile imposed at η = σ. Finally Figure 7d) shows the temperature profiles at different η along 
the channel. For all η values, the progressive alignment of the numerical solution with the analytical 
solution can be observed i.e the progressive establishment of the developed thermal profile. As a 
conclusion, all figures show an excellent agreement with the analytical solutions. 
 
As for the 2D case, the continuity of temperature between the solid and the fluid can be distinctly observed 
on Figure 8 for the 3D problem.  Figure 9 further confirms the consistent behavior of the numerical 
solution. As expected, a higher Pe yields a higher temperature amplitude at the interface, a higher 
periodicity at the boundary impacts the frequency at the interface without impacting the amplitude, a lower 
thermal conductivity ratio gives a lower temperature at the interface as well as a bigger solid thickness 
which allows more temperature diffusion through the solid. The numerical solutions are in excellent 
agreement with the analytical solutions. 
 

 
Figure 4 a) 3D surface mesh view, b) 2D mesh view 

 
Figure 5 Numerical solution: temperature distribution in the fluid solid domain for                

       . 
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Figure 6 Dimensionless temperature: Qualitative comparison between the numerical and analytical results for 

the dimensionless temperature at the fluid-solid interface for                       . 

 

 
Figure 7 2D case : dimensionless temperature distribution between the analytical solution (in Blue) and the 

numerical solution: a), b) c) in the hydrodynamically and thermally developed region at the fluid solid 

interface for a)                 and            , b)                  and           , c) 

                   and             
d) Starting from the inlet with                         and            

 

a) b) 

c) d) 
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Figure 8 Numerical solution: temperature distribution in the fluid solid domain for                    

   . a) 3D cut view, b) Channel cut view 

 
Figure 9 3D case: dimensionless temperature distribution between the analytical solution (in Blue) and the 

numerical solution: a), b) c) d) in the hydrodynamically and thermally developed region at the fluid solid 
interface for                 and         , b)                  and         , c)         

            and     , d)                  and          . 
 

 

4- Further applications for the conjugate heat transfer solver 
 
As seen previously, the ICFD solver can be used to solve conjugate heat transfer problems involving flow 
in pipes and cooling of systems and structures. Figure 10 features an example where the solver is being 
used to solve a stamping application. A workpiece gets stamped against the die, and the fluid flowing 
through a snake shaped pipe through the die is responsible for the subsequent cooling of both the 
workpiece and the die. Figure 11 shows another example of a problem currently under investigation where 
the conjugate heat transfer solver is being used to solve a coupled problem involving the thermal and the 
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EM solvers. Due to the Electromagnetic Joule heating, a sparse coil gets heated up and the flow running 
through the center of it is used to cool it down in order to prevent it from melting. 
 

 
Figure 10 Stamping application, temperature fringes: a) Initial state with hot workpiece b) Workpiece moved 
to the right and pressed against the die. Coolant liquid flowing through the die active. c) Workpiece moved 

back to initial position. Cooling of the die and the workpiece. D) Final state, cooled workpiece and die. 

 

 
Figure 11 Coupled EM-thermal-ICFD application: Cooling of coils used for induced heating applications  
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